https://nova.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:39475 2 emission is partly responsible for climate change induced by greenhouse effects. Carbon capture, utilization and storage is a major pathway to reduce CO2 emission. This article reviews conversion of CO2 into value-added products by photocatalytic, electrocatalytic and photoelectrocatalytic processes, which involve a catalyst, a reducing agent, an electrolyte and a reactor. An ideal catalyst should be cheap, abundant, non-toxic, less corrosive and chemically stable. Doping various catalysts can increase product yields up to 207 times. Furthermore, monolith reactors generated 23 times and 14 times higher yields than slurry and cell reactors, respectively. Photoelectrocatalytic conversion standout because it combines the advantages of photocatalytic and electrocatalytic processes such as high product yield and selectivity, no electrical energy required, cost-effectiveness, more catalysts option and no sacrificial donor.]]> Tue 09 Aug 2022 14:33:09 AEST ]]> Carbon dioxide capture using liquid absorption methods: a review https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:38191 2 capture. For instance, solution absorption is promising due to a large processing capacity, high flexibility and reliability, and rich experience in engineering applications. Nonetheless, actual commercial solutions, solvents and processes for CO2 capture suffer from slow reaction kinetics, low absorption capacity, high-energy consumption, susceptibility to corrosion, toxicity, low stability and high costs. Therefore, current research focuses on developing more economical, effective, green and sustainable technologies. Here we review 2015–2020 findings on CO2 capture using liquid absorption methods. Methods are based on various solutions, solvents and processes such as carbonate solution, ammonia solution, amine-based solution, ionic liquid, amino acid salt, phase changing absorbent, microcapsulated and membrane absorption, nanofluids and phenoxide salt solution. We discuss absorption performance, absorption mechanism, enhancement pathways and challenges. Amine- and NH3-based absorbents are widely used, yet they are limited by high regeneration energy, corrosiveness and degradation, reagent loss and secondary pollution caused by NH3 escape. Phase changing absorbents are getting more attention due to their lower cost and lower energy penalty. The incorporation of membrane and microencapsulation technologies to absorbing solvents could enhance CO2 absorption performance by reducing corrosion and increasing selectivity. Adding nanoparticles to solvents could improve CO2 absorption performance and reduce energy requirement. Besides, solvent blends and promoter-improved solvents performed better than single and non-promoted solvents because they combine the benefits of individual solvents and promoters.]]> Fri 22 Apr 2022 14:02:14 AEST ]]>